A novel DNA-binding protein, PhaR, plays a central role in the regulation of polyhydroxyalkanoate accumulation and granule formation in the haloarchaeon Haloferax mediterranei.

نویسندگان

  • Shuangfeng Cai
  • Lei Cai
  • Dahe Zhao
  • Guiming Liu
  • Jing Han
  • Jian Zhou
  • Hua Xiang
چکیده

Polyhydroxyalkanoates (PHAs) are synthesized and assembled as PHA granules that undergo well-regulated formation in many microorganisms. However, this regulation remains unclear in haloarchaea. In this study, we identified a PHA granule-associated regulator (PhaR) that negatively regulates the expression of both its own gene and the granule structural gene phaP in the same operon (phaRP) in Haloferax mediterranei. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays demonstrated a significant interaction between PhaR and the phaRP promoter in vivo. Scanning mutagenesis of the phaRP promoter revealed a specific cis-element as the possible binding position of the PhaR. The haloarchaeal homologs of the PhaR contain a novel conserved domain that belongs to a swapped-hairpin barrel fold family found in AbrB-like proteins. Amino acid substitution indicated that this AbrB-like domain is critical for the repression activity of PhaR. In addition, the phaRP promoter had a weaker activity in the PHA-negative strains, implying a function of the PHA granules in titration of the PhaR. Moreover, the H. mediterranei strain lacking phaR was deficient in PHA accumulation and produced granules with irregular shapes. Interestingly, the PhaR itself can promote PHA synthesis and granule formation in a PhaP-independent manner. Collectively, our results demonstrated that the haloarchaeal PhaR is a novel bifunctional protein that plays the central role in the regulation of PHA accumulation and granule formation in H. mediterranei.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei.

The polyhydroxyalkanoate (PHA) granule-associated proteins (PGAPs) are important for PHA synthesis and granule formation, but currently little is known about the haloarchaeal PGAPs. This study focused on the identification and functional analysis of the PGAPs in the haloarchaeon Haloferax mediterranei. These PGAPs were visualized with two-dimensional gel electrophoresis (2-DE) and identified by...

متن کامل

Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei.

The haloarchaeon Haloferax mediterranei has shown promise for the economical production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a desirable bioplastic. However, little is known at present about the genes involved in PHBV synthesis in the domain Archaea. In this study, we cloned the gene cluster (phaEC(Hme)) encoding a polyhydroxyalkanoate (PHA) synthase in H. mediterranei CGMCC ...

متن کامل

Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei

Although polyhydroxyalkanoate (PHA) accumulation and mobilization are one of the most general mechanisms for haloarchaea to adapt to the hypersaline environments with changeable carbon sources, the PHA mobilization pathways are still not clear for any haloarchaea. In this study, the functions of five putative (R)-specific enoyl-CoA hydratases (R-ECHs) in Haloferax mediterranei, named PhaJ1 to P...

متن کامل

Molecular characterization of a regulatory protein (PhaR) involved in PHA biosynthesis

Phasins (PhaP) are polyhydroxyalkanoate (PHA) granule-associated proteins that positively affect the PHA synthesis. In the heterologous expression experiment in Escherichia coli, introduction of only phaP caused overproduction of PhaP, and apparent repression of PhaP production was observed in the presence of phaR, which is located in the downstream region of phaP. It indicates that PhaR seems ...

متن کامل

Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica

BACKGROUND The halophilic archaeon Haloferax mediterranei is able to accumulate large amounts of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with high molar fraction of 3-hydroxyvalerate (3HV) from unrelated carbon sources. A Polyhydroxyalkanoate (PHA) synthase composed of two subunits, PhaCHme and PhaEHme, has been identified in this strain, and shown to account for the PHBV biosynthes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2015